

Chapter 17

Bit-Level Operations

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Objectives

Upon completion of this chapter you will be able to:

 Describe what is meant by the or, and, and exclusive or operations,

 Use the OI and OC instructions to turn on bits,

 Use the NI and NC instructions to turn off bits,

 Use the XI and XC instructions to toggle bits,

 Use the TM instruction to test bits,

 Use the OI and NI instructions to change the case of a letter,

 Use the XI and XC instructions for data encryption,

 Use the XC instruction to swap fields,

 Use the SLL and SRL instructions to shift bits in a register,

 Use the SLL and SRL instructions to multiply a register by a power of two,

 Use PC/370's SVC 18 to access the system date and time.

Introduction

In this chapter we will look at some of the System/370's bit level operations. Most of these are

fairly specialized: they aren't needed very often, but when you do need them there is simply no

getting by without them. In particular, we will look at the OI, NI, XI, OC, NC, XC, TM, SRL, and SLL

instructions.

The Or, And, and Exclusive Or Operations

By now we know that each byte consists of eight bits, or binary digits. There are three bit-level

operations. These operations are known as Or, And, and Exclusive Or. Each of these operations

compares corresponding bits from each of the two operands. Any bit in the target operand may be

changed as a result of the comparison. The result will depend on the following truth table:

 OR AND EXCLUSIVE OR

 The result is 1

if either bit

is 1

 The result is 1

if both bits

are 1

 The result is 1

if exactly one bit

is 1

Operand 1

0 0 1 1 0 0 1 1 0 0 1 1

Operand 2

0 1 0 1 0 1 0 1 0 1 0 1

Result

0 1 1 1 0 0 0 1 0 1 1 0

The corresponding Storage-and-Immediate (SI) instructions are OI (or immediate), NI (and

immediate) and XI (exclusive or immediate).

CHAPTER 17 17.2

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

The OI, NI, and XI Instructions

In the following discussion we will refer to bit positions by number: the standard is to number bits

from left to right, beginning with zero.

0 1 2 3 4 5 6 7

Example #1: Turn on the left-most bit in the first byte of FLD.

 OI FLD,X'80' or OI FLD,B'10000000'

Example #2: Turn on bit one of FLD. All other bits remain unchanged.

 OI FLD,X'40' or OI FLD,B'01000000'

But note... X'99' = B'10011001' = C'r'

 and... X'D9' = B'11011001' = C'R'

So Example #2 illustrates how we can change a lower case letter to upper case!

Example #3: Turn on bits zero, one, two, and three of FLD.

 OI FLD,X'F0' or OI FLD,B'11110000'

So Example #3 illustrates one method by which we can remove the sign from a

number following an UNPK.

You Try It...

1. Write the instruction to turn on the right-most bit in the first byte of FLD.

2. Write the instruction to turn on bits two and three of the last byte of X. (Use the length

operator to point to the last byte of X.)

3. Example #2 shows how we can change a lower case letter to upper case. What if the byte in

question contains a number; that is, X'F0' through X'F9'? What effect, if any, will the OI

instruction as shown have on that byte?

4. Example #3 shows how we can remove the sign from a number following an UNPK. What

instruction did we use before to do this? What is the length of these instructions? Why might

this method (OI) be preferred over the other?

Example #4: Turn off the leftmost and rightmost bits of FLD.

 NI FLD,X'7E' or NI FLD,B'01111110'

CHAPTER 17 17.3

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Example #5: Turn off bit four of FLD.

 NI FLD,X'F7' or NI FLD,B'11110111'

But note... X'FF' = B'11111111' = 255

 and... X'08' = B'00001000' = 8

 and... X'F7' = B'11110111' = 247

So we could also use:

 NI FLD,255-8 or

 NI FLD,X'FF'-X'08' or

 NI FLD,ALLBITS-BIT4

where ALLBITS EQU X'FF'

 and BIT4 EQU X'08'

Example #6: Turn off bit one of FLD. All other bits remain unchanged. (This is the reverse of

Example #2 above.)

 NI FLD,B'10111111' or

 NI FLD,X'BF' or

 NI FLD,ALLBITS-X'40'

So Example #6 illustrates how we can change an upper case letter to lower case!

Example #7: Turn on bit seven of the rightmost byte of FLDB, a three-byte packed field, if it is

off, otherwise turn it off.

 XI FLDB+2,X'01'

Changing the value of a field in this way (that is, turning it on if off, or turning it

off if on) is sometimes referred to as toggling. But note...

 X'0C' = B'0000110 0'

 and... X'0D' = B'0000110 1'

 

Recall that C represents a positive sign on a packed number, and D represents a

negative sign on a packed number, and we see that if we XI the last byte with

X'01', we "toggle" between C and D.

So Example #7 illustrates how we can change the sign of a packed number!

CHAPTER 17 17.4

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

You Try It...

5. Write the instruction to turn off the right-most bit in the first byte of FLD.

6. Write the instruction to turn off bits two and three of the last byte of X. (Use the length

operator to point to the last byte of X.)

7. Example #6 shows how we can change an upper case letter to lower case. What if the byte

in question contains a number; that is, X'F0' through X'F9'? What effect, if any, will the NI

instruction as shown have on that byte?

8. Example #7 shows how we can change the sign of a packed number. We could accomplish

the same thing by multiplying the number by -1. Given PK3 contains X'00012D', use both

methods to change the sign.

9. Refer to the previous question. Why might this method (XI) be preferred over the other

(MP)? Hint: What if we want to change the sign of PK3 which contains X'12345D'?

* * * * * * * * * * * * * * * * * * * *

The XI instruction has a curious property in that, if a field is XI'ed with a value, and the resulting

field is XI'ed with the same value, the field returns to its original value. This property is useful in

encryption programs as demonstrated in the next example.

Example #8: XI the letter 'R' with the character '+':

C'R' = X'D9' = B'11011001'

C'+' = X'4E' = B'01001110'

 result = B'10010111' = X'97' = C'p'

XI the result ('p') with the character '+' again:

C'p' = X'97' = B'10010111'

C'+' = X'4E' = B'01001110'

 result = B'11011001' = X'D9' = C'R'

We see the result ('R') is the original value. This property is useful in encryption

programs!

You Try It...

10. XI the letter 'H' with the character '$'. XI the result with the character '$' again. Show the

intermediate results.

11. XI the letter 'S' with the character '#'. XI the result with the character '#' again. Show the

intermediate results.

CHAPTER 17 17.5

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

The OC, NC, and XC Instructions

There is a corresponding SS (Storage-to-Storage) instruction for each of the above SI

instructions: they are OC, NC, and XC. The function is the same as with the previous instructions,

but in each case the second parameter is a field (or literal) rather than an immediate value.

Example #9: XC the letters 'PR' with the characters '+;'. (This can be thought of as

encryption.)

C'PR' = X'D7D9' = B'1101011111011001'

C'+;' = X'4E5E' = B'0100111001011110'

 result = B'1001100110000111'

 = X'9987' = C'rg'

XC the result ('rg') with the characters '+;' again. (This can be thought of as

decryption.)

C'rg' = X'9987' = B'1001100110000111'

C'+;' = X'4E5E' = B'0100111001011110'

 result = B'1101011111011001'

 = X'D7D9' = C'PR'

We see the result ('PR') is the original value!

Example #10: If FLDA DS CL1 has value X'10110110'

 and: FLDB DS CL1 has value X'11010010'

XC FLDA,FLDB gives FLDA = X'01100100'

XC FLDB,FLDA (using the new FLDA)

 gives FLDB = X'10110110'

XC FLDA,FLDB (using the new FLDB)

 gives FLDA = X'11010010'

But note: FLDA is now equal to the "original" FLDB and FLDB is now equal to the

"original" FLDA!

So Example #10 illustrates how we can use the XC instruction to "swap" the

values in two fields. (The two fields must be of equal size.)

You Try It...

12. Given WK2 DC CL2'HS' . XC the field WK2 with the characters '$#' twice. Show the result after

each XC.

CHAPTER 17 17.6

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

13. Given A DC CL2'PJ' and B DC CL2'B4' . Use the XC instruction to swap A and B. Show all

intermediate results.

14. Given X DC CL2'R2' . Determine the results of XC X,X. What can you conclude?

Manipulating Registers: The SLL and SRL Instructions

The SLL (Shift Left Logical) and SRL (Shift Right Logical) instructions are similar to the SRP (Shift

and Round Packed) instruction, except that whereas that instruction shifted the digits of a packed

number to the left or right, these instructions shift the bits in a register to the left or right. Recall

that the effect of the SRP was to multiply or divide the packed number by some power of ten.

Likewise, the result of the SLL is to multiply the value of a register by some power of two, and the

result of the SRL is to divide the value of a register by some power of two. For example:

Example #11:

LA R3,4 R3=

0000 0000 0000 0000 0000 0000

0000 0100

4

00 00 00 04

SLL R3,3

0000 0000 0000 0000 0000 0000

0010 0000

32

00 00 00 20

SRL R3,2

0000 0000 0000 0000 0000 0000

0000 1000

8

00 00 00 08

The SLL instruction above shifts all bits in register 3 to the left three positions. The net effect is to

multiply that register by 2

3

, or 8, giving 4 * 8 = 32. The SRL instruction shifts all bits in register 3

to the right 2 positions. The net effect is to multiply that register by

2

-2

, or divide by 2

2

, or 4, giving 32 / 4 = 8.

You Try It...

15. Execute the following instructions. Show all intermediate results.

 LH R4,=H’48’

 SRL R4,4

 SLL R4,2

16. Execute the following instructions. Show all intermediate results.

 LH R4,=H’20’

 SRL R4,3

 SLL R4,3

Sample Program: Bit-Level Operations

The following program, BITOPS.MLC, will demonstrate most of the examples discussed above. The

output from the execution of the program follows the source code listing.

CHAPTER 17 17.7

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 PRINT NOGEN

**

* FILENAME: BITOPS.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : Demonstrate bit-level operations. *

**

 START 0

 REGS

BEGIN BEGIN

*

 WTO 'EXAMPLE #2 - Demonstrate use of OI to change'

 WTO 'lower case letter to upper case'

 WTO LOWER

 OI LOWER,X'40'

 WTO LOWER

*

 WTO 'EXAMPLE #3 - Demonstrate use of OI to remove'

 WTO 'the sign from a number following an UNPK'

 UNPK UNPACKED,=P'-12345'

 WTO UNPACKED

 OI UNPACKED+L'UNPACKED-1,X'F0'

 WTO UNPACKED

*

 WTO 'EXAMPLE #6 - Demonstrate use of NI to change'

 WTO 'upper case letter to lower case'

 WTO UPPER

 NI UPPER,ALLBITS-X'40'

 WTO UPPER

*

 WTO 'EXAMPLE #7 - Demonstrate use of XI to ''toggle'''

 WTO 'the sign of a packed number'

 MVC EDITED,MASK

 ED EDITED,POSITIVE

 WTO EDITED

 XI POSITIVE+L'POSITIVE-1,X'01'

 MVC EDITED,MASK

 ED EDITED,POSITIVE

 WTO EDITED

 XI POSITIVE+L'POSITIVE-1,X'01'

 MVC EDITED,MASK

 ED EDITED,POSITIVE

 WTO EDITED

*

 WTO 'EXAMPLE #8 - Demonstrate use of XI for'

 WTO 'encryption: once to encrypt, once to decrypt.'

 WTO CRYPT1

 XI CRYPT1,C'+' encrypt

 WTO CRYPT1

 XI CRYPT1,C'+' decrypt

 WTO CRYPT1

*

 WTO 'EXAMPLE #9 - Demonstrate use of XC for'

 WTO 'encryption: once to encrypt, once to decrypt.'

 WTO CRYPT2

 XC CRYPT2,=C'+;' encrypt

 WTO CRYPT2

 XC CRYPT2,=C'+;' decrypt

 WTO CRYPT2

*

(continued)

CHAPTER 17 17.8

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 WTO 'EXAMPLE #10 - Demonstrate use of XC to swap'

 WTO 'two values'

 WTO BOTH

 XC FLDA,FLDB

 XC FLDB,FLDA

 XC FLDA,FLDB

 WTO BOTH

*

 WTO 'EXAMPLE #11 - Demonstrate that SLL is same as'

 WTO 'multiplying a register by a power of two, and'

 WTO 'that SLR is same as dividing by a power of two.'

 LA R3,4 We begin with 4

 CVD R3,DBLWORD

 MVC EDITED,MASK

 ED EDITED,DBLWORD+5

 WTO EDITED

 SLL R3,3 Multiply 4 by 2^3, or 8, giving 32

 CVD R3,DBLWORD

 MVC EDITED,MASK

 ED EDITED,DBLWORD+5

 WTO EDITED

 SRL R3,2 Divide 32 by 2^2, or 4, giving 8

 CVD R3,DBLWORD

 MVC EDITED,MASK

 ED EDITED,DBLWORD+5

 WTO EDITED

*

 RETURN

*

 LTORG

*

DBLWORD DC D'0'

MASK DC XL7'40202020212060'

EDITED DC CL7' '

POSITIVE DC PL3'+6789'

UNPACKED DC CL5' '

LOWER DC CL1'r' Lower case letter 'r'

UPPER DC CL1'T' Upper case letter 'T'

ALLBITS EQU X'FF'

CRYPT1 DC CL1'R'

CRYPT2 DC CL2'PR'

BOTH DS 0CL9

FLDA DC CL3'123'

 DC CL3' '

FLDB DC CL3'AbC'

 END

CHAPTER 17 17.9

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

A:\MIN>bitops

EXAMPLE #2 - Demonstrate use of OI to change

lower case letter to upper case

r

R

EXAMPLE #3 - Demonstrate use of OI to remove

the sign from a number following an UNPK

1234N

12345

EXAMPLE #6 - Demonstrate use of NI to change

upper case letter to lower case

T

t

EXAMPLE #7 - Demonstrate use of XI to 'toggle'

the sign of a packed number

 6789

 6789-

 6789

EXAMPLE #8 - Demonstrate use of XI for

encryption: once to encrypt, once to decrypt.

R

p

REXAMPLE #9 - Demonstrate use of XC for

encryption: once to encrypt, once to decrypt.

PR

rg

PR

EXAMPLE #10 - Demonstrate use of XC to swap

two values

123 AbC

AbC 123

EXAMPLE #11 - Demonstrate that SLL is same as

multiplying a register by a power of two, and

that SLR is same as dividing by a power of two.

 4

 32

 8

You Try It...

17. Write a similar program to demonstrate your answers to all previous You Try It exercises.

Sample Program: Accessing the System Date and Time

The next program, DATE370.MLC , uses several of these instructions to retrieve the system date and

time. This program makes use of supervisor call 18, which returns time in register 0, the year

(with century) in register 1, and the day, month, and day of week indicator in register 2. These

registers are then manipulated so as to return the date and time in a standard form. Meaningful

comments have been used throughtout. Of particular interest is the means by which the SLL and

SRL instructions are used together to isolate a portion of a register. Note: SVC 18 is discussed in

PC/370’s documentation. The use of SVC 18 to obtain the system date and time is unique to

PC/370.

CHAPTER 17 17.10

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 PRINT NOGEN

**

* FILENAME: DATE370.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : Demonstrate date/time functions in PC/370. *

**

 START 0

 REGS

BEGIN BEGIN

 WTO MESSAGE (Before)

*

 SVC 18

* Supervisor call 18 returns

* time in R0; year with century

* in R1; day, month, and day of

* week in R2.

*

 LR R3,R0 Put time in R3

 SRL R3,24 hhmmssxx becomes 000000hh

 CVD R3,DBL Hours only

 UNPK TIME(2),DBL Move to output

 OI TIME+1,X'F0' Remove sign

*

 LR R3,R0 Put time in R3

 SLL R3,8 hhmmssxx becomes mmssxx00

 SRL R3,24 mmssxx00 becomes 000000mm

 CVD R3,DBL Minutes only

 UNPK TIME+3(2),DBL Move to output

 OI TIME+4,X'F0' Remove sign

*

 LR R3,R0 Put time in R3

 SLL R3,16 hhmmssxx becomes ssxx0000

 SRL R3,24 ssxx0000 becomes 000000ss

 CVD R3,DBL Seconds only

 UNPK TIME+6(2),DBL Move to output

 OI TIME+7,X'F0' Remove sign

*

 LR R3,R0 Put time in R3

 SLL R3,24 hhmmssxx becomes xx000000

 SRL R3,24 xx000000 becomes 000000xx

 CVD R3,DBL Hundredths of seconds only

 UNPK TIME+9(2),DBL Move to output

 OI TIME+10,X'F0' Remove sign

*

 CVD R1,DBL Year with century

 UNPK DATE+6(4),DBL Move to output

 OI DATE+9,X'F0' Remove sign

*

 LR R3,R2 Put date in R3

 SRL R3,24 mmddww00 becomes 000000mm

 CVD R3,DBL Month only

 UNPK DATE(2),DBL Move to output

 OI DATE+1,X'F0' Remove sign

*

(continued)

CHAPTER 17 17.11

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 LR R3,R2 Put date in R3

 SLL R3,8 mmddww00 becomes ddww0000

 SRL R3,24 ddww0000 becomes 000000dd

 CVD R3,DBL Day of month only

 UNPK DATE+3(2),DBL Move to output

 OI DATE+4,X'F0' Remove sign

*

 LR R3,R2 Put date in R3

 SLL R3,16 mmddww00 becomes ww000000

 SRL R3,24 ww000000 becomes 000000ww

 MH R3,=H'3' Each day of week is 3 long

 A R3,=A(DOWTBL) Displacement into table

 MVC DOW,0(R3) Move to output

*

 WTO MESSAGE (After)

*

 RETURN

*

 LTORG

*

MESSAGE DS 0CL71

 DC CL18'DATE370...Time is '

TIME DC CL11'hh:mm:ss.xx'

 DC CL11'...Date is '

DATE DC CL10'mm/dd/yyyy'

 DC CL18'...Day of week is '

DOW DC CL3'ddd'

*

DBL DS D

DOWTBL DC C'SunMonTueWedThuFriSat'

*

 END

A:\MIN>date370

DATE370...Time is hh:mm:ss.xx...Date is mm/dd/yyyy...Day of week is ddd

DATE370...Time is 08:49:54.44...Date is 01/06/1994...Day of week is Thu

* * * * * * * * * * * * * * * * * * * *

The ability to turn on or turn off selected bits means we can use bits as switches. In particular, any

binary condition (a condition with only two possible states) can be represented with a single bit

rather than an entire byte. This can result in a substantial savings of disk space and

telecommunications time and cost. Some examples of binary conditions are:

CONDITION

OFTEN

REPRESENTED AS

CAN ALSO BE

REPRESENTED AS

GENDER

'F' = Female

'M' = Male

0 = Female

1 = Male

TENURED

'N' = No

'Y' = Yes

0 = No

1 = Yes

CHECKING ACCOUNT

TRANSACTION TYPE

'C' = Check

'D' = Deposit

0 = Check

1 = Deposit

OUT OF STOCK

' ' = No

'X' = Yes

0 = No

1 = Yes

MARKED FOR DELETION

(as used in dBASE III+)

' ' = No

'*' = Yes

0 = No

1 = Yes

CHAPTER 17 17.12

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Checking Bits: The TM Instructions

As we've already seen, we can use the OI, NI, and XI instructions to turn on or turn off bits. Of

course, it doesn't do us any good to use a bit as a switch if we cannot also test the value of that

bit. The TM (Test under Mask instruction) is used to do so. The TM instruction is an SI-type

instruction and has the form TM field,mask

It is immediately followed by a BC (branch on condition), typically using one of the following

extended mnemonics:

MNEMONIC MEANING BC EQUIVALENT

BO

Branch if Ones

BC 1,label

BM

Branch if Mixed

BC 4,label

BZ

Branch if Zeros

BC 8,label

BNO

Branch if Not Ones

BC 14,label

BNM

Branch if Not Mixed

BC 11,label

BNZ

Branch if Not Zeros

BC 7,label

Example #12: If the first and third bits of FLDA are on, then turn off the third bit. Otherwise,

turn on the seventh bit.

 TM FLDA,B'10100000'

 BO OFF3RD

 OI FLDA,B'00000010'

 B DONE

OFF3RD EQU *

 NI FLDA,255-B'00100000'

DONE EQU *

Example #13: If the fifth, seventh or eighth bits of FLDB are on, then turn on the first bit.

 TM FLDB,B'00001011'

 BZ ALLOFF

 OI FLDB,B'10000000'

ALLOFF EQU *

There is no SS equivalent to the TM instruction: you can only test one byte at a

time, and you can use an immediate value only. Of course, as with all SI

instructions, you can use equated values. For example, to test for gender equal

male, one might code:

TM INFO,MALE where

INFO DS CL1

MALE EQU X'80' First bit indicates gender

CITIZEN EQU X'40' Second bit indicates citizenship

* Other bits unused at this time

CHAPTER 17 17.13

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

You Try It...

18. If the last bit of the first byte of A is on, and the first bit of the last byte of B is off, then turn

on the first bit of the first byte of C.

19. Given INFO, MALE, and CITIZEN as defined above, and SWITCH DC CL1' ' . If INFO indicates a

female citizen, move 'Y' to SWITCH. Otherwise. move 'N' to SWITCH.

CHAPTER 17 17.14

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Exercises

1. True or false. Given A DC CL2’IQ’ and B DC CL2’5H’ ...

T F a. To turn on the last bit in the last byte of A, leaving all other bits unchanged, we

code OI A+1,X’08’

T F b. To turn off the first bit in the last byte of A, leaving all other bits unchanged,

we code NI A+1,X’80’

T F c. To turn off the leftmost bit in the first byte of A if it is on, and to turn on that

bit if it is off, we code XI A,X’80’

T F d. To change the ’Q’ in A to lower case. we code NI A+1,B’10111111’

T F e. To swap A and B we code XC A,B three times.

T F f. The value in B may have been a result of UNPK B,PK3 where PK3 is a packed

number containing +158.

T F g. OI B+L’B-1,X’F0’ will give B equal to CL2’58’

T F h. Given TM A,X’C0’ and BZ SKIP the branch will be taken.

T F i. Given TM B+1,B’10000000’ and BO SKIP the branch will be taken.

T F j. OC A,B gives A equal X’3C10’.

T F k. The SRL instruction is used to multiply a register by a power of 10.

T F l. Given register 4 contains 10. After SLL R4,3 followed by SRL R4,3 register 4

still contains 10.

T F m. Given register 4 contains 10. After SRL R4,3 followed by SLL R4,3 register 4

still contains 10.

2. Complete the following tables:

 OR AND EXCLUSIVE

OR

Operand 1

0 1 0 1 0 1 0 1 0 1 0 1

Operand 2

0 0 1 1 0 0 1 1 0 0 1 1

Result

3. Supply the bits for MASK and the resulting bits for FLD:

a. OI FLD,X'FC' FLD 1 1 0 0 0 1 1 0

 MASK

 FLD

b. NI FLD,X'E4' FLD 1 1 0 0 0 1 1 0

 MASK

 FLD

c. XI FLD,X'7A' FLD 1 1 0 0 0 1 1 0

 MASK

 FLD

CHAPTER 17 17.15

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Exercises

d. OI FLD,X'B3' FLD 1 1 0 0 0 1 1 0

 MASK

 FLD

e. NI FLD,X'A6' FLD 1 1 0 0 0 1 1 0

 MASK

 FLD

f. XI FLD,X'AA' FLD 1 1 0 0 0 1 1 0

 MASK

 FLD

g. OI FLD,X'0F' FLD 1 1 0 0 0 1 1 0

 MASK

 FLD

4. Given the specified values for FLD (before), MASK, and FLD (after), supply the missing

instruction.

a. FLD 1 1 0 0 0 1 1 0

 MASK 1 1 1 0 0 1 0 0

 FLD 1 1 0 0 0 1 0 0

b. FLD 1 0 0 0 1 1 0 1

 MASK 1 1 1 1 1 0 0 1

 FLD 1 1 1 1 1 1 0 1

c. FLD 1 1 0 1 0 0 0 1

 MASK 0 0 0 0 1 1 1 1

 FLD 1 1 0 1 1 1 1 0

d. FLD 1 1 0 1 0 1 1 1

 MASK 1 1 0 1 0 0 1 0

 FLD 1 1 0 1 0 1 1 1

e. FLD 1 1 0 1 0 1 1 1

 MASK 0 0 1 1 0 1 0 0

 FLD 0 0 0 1 0 1 0 0

f. FLD 1 1 0 1 0 1 1 1

 MASK 0 0 1 1 0 1 0 1

 FLD 1 1 1 0 0 0 1 0

g. FLD 0 1 1 0 1 1 0 0

 MASK 1 0 1 0 0 1 1 1

 FLD 0 0 1 0 0 1 0 0

CHAPTER 17 17.16

BIT LEVEL OPERATIONS

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Exercises

5. Write the BAL code for each of the following:

a. If the first, second, and third bits of FLDA are not all on, then turn on the sixth and

seventh bits.

b. If the fourth or fifth bit of FLDB is off, then turn on the first bit, otherwise turn off

the last bit.

6. Based on our discussion of the use of the XC instruction, write a program which will

encrypt a file. Write another (similar) program which will decrypt a file. You can either

hard-code the "key" in the program, or read it from a file.

 Note: Examples 8 and 9 of this chapter were carefully chosen to give output with

printable characters. It is unlikely that your program will do so for all characters.

Similarly, it is unlikely that all characters resulting from your encryption routine (which

works in EBCDIC) will have a corresponding character in the ASCII character set.

Therefore, make sure your encryption routine writes an EBCDIC file, and that your

decryption program reads an EBCDIC file. To do so, simply omit the OI instruction used

before the OPEN macro. The use of EBCDIC on the PC gives you an added level of

encryption anyway! (This EBCDIC vs. ASCII consideration was mentioned in chapter

14.)

7. Use DATE370.MLC in this chapter to write a copy routine which returns the system date in

'mm/dd/yy' format (no century). Call your routine DATE370.CPY . Modify one of your

existing report programs to use this routine to obtain the system date, and print that date

in the headings. (COPY was first discussed in chapter 13.)

8. Use DATE370.MLC in this chapter to write a copy routine which returns the system time in

'hh:mm:ss' format (no hundredths). Call your routine TIME370.CPY . Modify one of your

existing report programs to use this routine to obtain the system time, and print that time

in the headings. (COPY was first discussed in chapter 13.)

